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STRUCTURE AND DYNAMICS OF CORRELATED
CLUSTER GROWTH PROCESSES

Fereydoon Family\Department of Physics, Emory University, Atlanta, GA 30322

The main thrust of our research has been the investigation of various aspects of
the structure and dynamics of cluster growth processes. We have also used the
concepts of cluster growth to investigate a number of other phenomena, including
studies of the morphology of rough surfaces and the phenomenon of pattern
formation.)The following is a brief outline of the progress made in some of these
studies.

S//

DYNAMIC SCALING AND PHASE TRANSITIONS IN
SURFACE GROWTH

' Selfffime fractal interfaces are generated in a variety of far-from-equilibrium processes,
including fluid flow in porous media, vapor deposition, and corrosion, as well as in biological
systems. Recently, there has been considerable interest in the study of stochastically growing
interfaces # in the context of ballistic deposition, the Eden model, and Burger's equation.
Much of this interest stems from the fact that in addition to their connection to processes of
fundamental practical importance, such as thin film growth and interface dynamics in random
media, these models exhibit non-trivial scaling behavior. The dynamics of the interface in these
models has also been shown to be intimately related to a variety of other problems, including
directed polymers in random media, the large-time behavior of randomly stirred fluids, and the
evolution of Sivashinski flame fronts.

The main quantities of interest/l& the scaling approach to interface dynamics are the
exponents a and 3 which characterize the scaling of the interface width WL(t) with system size L
and time t, respectively. Family and Vicsek [2] have proposed that the scaling of the interface
width is expected to be of the form [2],

WL(t) - La f(t/La  ......

where the scaling function f(x) - xP for x << 1 and f(x) -+ constant for x >> 1. For spatial
dimension d = 2 (substrate dimension d-1), the results for ballistic deposition, the Eden model, Ocde,
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and Burger's equation agree giving a = 1/2 and f = 1/3. For d > 2, however, there is still

controversy over the values of the exponents as well as the universality of the various surface
growth models. In addition, the dynamic renor mlization group approach to Burger's equation
has not been successful in predicting precise numerical exponents for d > 2. Therefore, the
study of discrete models with continuously tunable parameters, which may be related to those in
Burgers's equation, and which can also be easily studied by numerical methods, can provide
valuable insight into the dynamics of interface growth for d > 2.

We have carried out extensive numerical simulations of a restricted solid-on-solid surface
growth model [3] in d = 2 + 1 dimensions which is a finite-temperature generalization of a model
used by Kim and Kosterlitz (KK). Most of our simulations were carried out with a finite-density
'parallel' algorithm on the Naval Research Laboratory Connection Machine (NRL-CM2). With
our algorithm, many sites are updated simultaneously and we have been able to generate surfaces
using up to 1012 particles. This is by far the most extensive simulation of its kind and has
enabled us to explore scaling regimes in system sizes that could not have possibly been studied
on conventional computers.

We find that in our model there exists [3] a phase transition, as a function of a
temperature-like parameter r, in 2+1 dimensions. The surface width exponents cross over from
the Kim-Kosterlitz values for small , to the low temperature values a - 0.25, P = 0.14 for large
K. At the transition point re, we find logarithmic growth and logarithmic dependence of the
surface width on system size.

We have recently shown [4] that the origin of this unusual transition is intimately related
with the connection between our model and the continuum Kardar-Parisi-Zhang (KPZ) equation
of surface growth. In particular, the transition observed in our model is shown [4] to be due to a
crossing of the corresponding nonlinearity parameter in the KPZ equation from negative to
positive values. The critical point where logarithmic behavior is observed corresponds to the
point at which the nonlinearity parameter vanishes. Our Monte Carlo simulation results for the
growth velocity as a function of overall interface tilt support this conclusion.

NUMERICAL SOLUTION OF A CONTINUUM EQUATION FOR
INTERFACE GROWTH IN 2+1 DIMENSIONS

Recently, there has been considerable interest in the study of rough surfaces and
stochastically growing interfaces [1]. In particular, the continuum stochastic equation of Kardar,
Parisi, and Zhang (KPZ) has been instrumental in providing a phenomenological basis for
describing the dynamics of a variety of cluster growth models. For spatial dimension d = 2
(substrate dimension d-l), the results for ballistic deposition, the Eden model, and the KPZ
equation agree giving a = 1/2 and P = 1/3. However, for d > 2, there is controversy over the
values of the exponents as well as the universality of the various surface growth models. In
particular, the perturbative renormalization group approach to the KPZ equation has not been
successful in predicting precise numerical exponents for d > 2. In addition, previous attempts to
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solve the KPZ equation numeically in 2+1 dimensions were clearly flawed, because they yielded
exponent values (a - 0.18, P - 0.09 - 0.15) which were much smaller than those obtained for
the discrete microscopic models (a -- 0.33 - 0.40, P - 0.20 - 0.25). Therefore, a reliable study
of the continuum KPZ equation in 2+1 dimensions was needed to clarify the apparent
disagreement between the results for microscopic models and the continuum equation.

We carried out [5] extensive large-scale numerical integrations of the Kardar-Parisi-
Zhang (KPZ) equation for stochastic interface growth in 1+1 and 2+1 dimensions as a function
of the non-linearity parameter . We found for the first time results for the growth exponents a
and J5 close to those obtained for discrete models. In particular, we found that for large values of
, the values of the exponents are close to the conjecture of Kim and Kosterlitz, indicating that

the smaller values obtained previously are due to crossover effects.
Our study [5] has partially resolved the question of the existence of a phase transition in

2+1 dimensions, recently observed in discrete models. In contrast to the studies of the discrete
models, our results do not show evidence of a phase transition in 2+1 dimensions for e > 1.
This indicates that either there is a fundamental difference between the discrete and the continuum
models, or previous studies were not in the asymptotic regime. Clearly, further investigations of
the discrete models is needed in order to fully settle this controversy.

GEOMETRICAL MULTIFRACTALITY OF DIFFUSION-LIMITED
AGGREGATION CLUSTERS

- Since the fractal scaling of the mass distribution in diffusion-limited aggregation (DLA)
was discovered, it has been assumed that the structure of DLA clusters can be adequately
described by a single exponent called the fractal dimension. Recent studies of measures defined
on fractal substrates, however, indicate that many distributions in nature should be interpreted in
terms of multifractal scaling, i.e., an infinite hierarchy of exponents is needed to account for the
complicated structure of such measures. In particular, the growth probability distribution in
diffusion-limited growth processes has been shown to exhibit multifractal scaling.

Much less is known about the multifractal properties of the geometry of the objects
observed in fractal growth phenomena. Since the distribution of growth probabilities of
diffusion-limited aggregates has been shown to be multifractal, it is natural to ask: Is DLA a
geometrical multifractal or it can be described by a single fractal dimension?

We applied two different methods to address this question [6]. Using large off-lattice
DLA clusters (consisting of one million particles) we obtained the left side of the mass
multifractal spectrum f(a) directly from the number of particles within the boxes of the grid
covering the clusters. Since the generalized dimensions corresponding to the negative moments
q<0 can not be determined reliably using box counting techniques we centered growing boxes
around many randomly selected particles in the aggregates and determined the generalized
dimensions from the scaling of the moments of the number of particles within boxes of various
sizes. Our results support the picture that the distribution of mass in DLA clusters is multifractal,
since the Dq values decrease monotonically with increasing q. Our calculations indicate [6] that
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the commonly used method for the determination of the fractal dimension of DLA clusters yield
Dqe=2 which is somewhat smaller than the true fractal dimension D&

DROPLET GROWTH PROCESSES:
SIMULATION, EXPERIMENT AND THEORY

The formation of a distribution of various size droplets is the characteristic feature of
many systems from thin films and breath figures to rain, fog, clouds, foams and froths. In the
past two year we have developed several models and analytical theories, and we have performed
experiments on vapor deposited thin films in order to develop a better understanding of the
kinetics of droplet growth and coalescence [7-13]. In general, droplet formation occurs either by
spontaneous nucleation or by growth from a heterogeneously distributed nucleation centers, such
as impurities. In homogeneous nucleation droplets can form and grow anywhere in the system.
We have shown [7-11] that the droplet size distribution in homogeneous nucleation has a novel
bimodal structure consisting of a monodispersed distribution of large droplets superimposed on a
polydispersed distribution of smaller droplets. A scaling description for the evolution of the time
dependent droplet size distribution and its moments is presented and it is found that the scaling
predictions are in excellent agreement with the simulations. A rate equation approach similar to
the Smoluchowski equation is also introduced for describing the kinetics of homogeneous
droplet growth. The results of the simulations of the homogeneous nucleation model are also
compared with the experiments on droplet growth in thin films obtained by vapor deposition of
tin on sapphire substrates. It appears that this model captures the essential features of the
distribution of droplets in the vapor deposition experiments.

We have also introduced a model for droplet growth by heterogeneous nucleation [8-10].
We show that in contrast to homogeneous nucleation, where the size distribution consists of a
power-law distribution superimposed on a monodispersed distribution [7] at large sizes, the
droplet size distribution has a monodispersed, bell-shaped form. We have shown that the origin
of this difference lies in the fact that in homogeneous nucleation droplets are continuously fed
into the system and this leads to a highly polydispersed stationary distribution. The exact
exponents describing the size distribution and the growth law for droplet growth with
heterogeneous nucleation are determined using scaling arguments. We have also developed a
kinetic equation, similar to the Smoluchowski rate equation, for heterogeneous droplet growth.
Using this approach we obtain a relation among the exponents and determine the scaling form of
the reaction kernel.

SELF-ORGANIZED CRITICALITY AND AVALANCHE DYNAMICS IN A
DROPLET GROWTH MODEL WITH SLIDING

What is the origin of the long-range spatial and temporal correlations that are commonly
observed in many open dissipative systems? This question has attracted considerable attention in
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recent years. The existence of a stationary state in a simple model of sand pile, has prompted
Bak et al to propose that the type of scale -invariant avalanches that occur in the sand pile model
might be related to the scaling and fractal behavior in other open systems. The existence of
minimally stable states may explain the dynamics behind scaling and power law behavior
observed in fractal systems. We have investigated [12,13] a model of droplet deposition and
coalescence with avalanche.

In our model [12,13] we randomly add droplets to a system and once a given droplet
reaches a critical mass, it falls along a preferred direction in the system and in the process
coalesces and removes all the droplets that it comes in contact with. We have investigated the
scaling properties of such systems using both lattice and off-lattice models. We find that the
distribution of droplets and other properties of the system at the threshold obey scaling laws.
However, unlike the sand pile model, there are no correlation between different avalanches. This
suggests that the lack of a conserved parameter may be responsible for the difference between the
behavior of our model and the sand pile model. We are currently continuing our investigations
of the avalanche model using different dynamical rules.

FRACTAL STRUCTURE AND THE DEVELOPMENT OF
HUMAN RETINAL VESSELS

The mechanism for the formation of retinal vessel patterns in the developing human eye is
an unresolved question of considerable importance. The current hypothesis is based on the
existence of a variable oxygen gradient across the developing photoreceptors which controls the
release of angiogenic factors which in turn stimulate the growth of retinal vessels. This implies
that the limiting step is a diffusion process. To test this hypothesis we have performed [14] a
fractal analysis of human retinal vessels using the two-point correlation function and the mass-
radius relation methods. We find that the human retinal vessels are self-similar with a fractal
dimension of D-1.7, which is expected for a diffusion limited process. This result supports the
hypothesis that diffusion is the fundamental physical process underlying the formation of human
retinal development.

ISING DYNAMICS WITH LONG-RANGE EXCHANGE

The Ising model has been used to simulate a wide variety of systems from magnets to
fluids and binary alloys. Some of the most important questions about these systems involves
their dynamical behavior. The classic picture of the dynamics of the Ising model developed by
Glauber and by Kawasaki are based on spin-flip or spin-exchange between nearest neighbors.
We have recently extended these approaches to include dynamics with long-range exchange [ 15].
In our model two spins are exchanged with a probability that depends on some power of the
distance between them. Using a diagrammatic approach we have been able to determine exactly
the dynamic exponents for the critical slowing down and for the domain growth. Long-range
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dynamics [15] can be considered as a Levy flight generalization of the classical Ising dynamics
which is based on spin diffusion. Our dynamical model [15] based on long-range exchange may
be applied to experimental studies of phase separation in such systems as polymers solutions and
polymer blends. It may also be relevant in the development of new fast algorithms for avoiding
critical slowing down. There have already been some confirmations of our analytical results, and
further numerical simulations are also underway.

INTERACTIVE PERCOLATION:
A CORRELATED CLUSTER GROWTH MODEL

We have developed a model [16] to describe systems, such as atomic physisorption on
surfaces, where interactions between neighbors can either enhance or deter absorption.
Interactions are included in the standard model of site percolation by specifying two numbers, Po
and p,, which are the probabilities of occupying a site on a lattice if none or at least one of the
neighboring sites are occupied, respectively. Monte Carlo methods were used to simulate the
irreversible growth of clusters starting from an empty two-dimensional square lattice, and
continuing through the percolation threshold. The value of the percolation threshold Pc and other
properties of the system depend on the parameter r = Po 1p,. For r=1, the system corresponds to
ordinary percolation. The limit r -+ 0 gives the Eden model, and the limit r -, co results in a
checkerboard pattern. Several quantities were analyzed to determine the critical exponents D, v,
P, y, and -, including the threshold distribution width, the mean cluster size, the spanning
cluster size, the cluster size distribution, and the cluster radius distribution. In all cases, the data
are consistent with the exponents of ordinary percolation, indicating that all values of r lie in the
same universality class.

RISING BUBBLE IN A HELE SHAW CELL

Fluid motion in a two dimensional Hele Shaw cell has received renewed interest in recent
years. Attention has focused on the selection mechanism of a finger width that forms in the Hele
Shaw cell. The problem of predicting the width of a steady state finger turns out to be
mathematically similar to the selection mechanism of the dendrite growing in the undercooled
melt; in the absence of surface tension, both problems possess a continuous family of solutions.
Surface tension breaks this continuous family into a discrete set among which only one state is
dynamically stable and thus selected.

A less studied but closely related problem is the motion of a finite bubble in a Hele Shaw
cell. Consider a finite bubble in a Hele Shaw cell which is initially filled with fluid of higher
viscosity. The question is: What will be the shape and the speed of the bubble, If we push the
fluid from far left with the rate VW per second, where V is the velocity and W is the size of the
wall? Saffman and Taylor worked out this problem in the absence of surface tension and
discovered that for a given bubble area, the speed of the bubble is undetermined; its speed can
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vary from V to infinity. Experimentally, however, unique velocity is selected. This problem is
similar in spirit to the Saffman-Taylor problem, where the width of the finger is undetermined.
We thus expect that a similar mechanism discovered in the Saffman-Taylor problem should
work; surface tension breaks the continuous family into a discrete set.

We have recently studied [17] the problem of a rising bubble in a Hele-Shaw cell using
the solvability theory. In the absence of surface tension, Saffman-Taylor solution contains two
free parameters for a given bubble area. It was shown [17] that in the presence of surface tension
a solution does not exist for U>2 for any bubble area, where U is the dimensionless speed. We
also made predictions for the shape and the speed of the symmetric bubble and obtained scaling
relations between U and V as a function of the external parameters. Our results explain the recent
experiment of Maxworthy on bubbles in a Hele-Shaw cell.

DYNAMICS OF RANDOM MEDIA: ANOMALOUS WAVE PROPAGATION
AND DISPERSION NEAR THE PERCOLATION THRESHOLD

The dynamic properties of random media have received considerable attention in recent
years. Much of this activity was prompted by the introduction of the concept of fractons by
Alexander and Orbach, who made the observation that diffusion on fractals is anomalous. The
importance of this anomalous behavior lies in the relation between diffusion and conduction that
was first recognized by de Gennes. It was then possible to define two independent diffusion
problems, namely the ant and the termite models of conduction. Because these two types of
diffusion are decoupled from each other, we get two possible dynamics for the systems. This
decoupling is clearly not a general result and as soon as the frequency is non-zero, the simple
diffusion models are no longer valid.

As a first step in treating both propagation and dissipation in random systems, we have
studied wave propagation close to the percolation threshold [ 18]. This might be an elastic wave
for a sol-gel system, or an electromagnetic wave for a mixture of dielectric and metallic
components. Because of the Kramers-Kronig relations, an extremely rich situation occurs in
which the dynamics depends on both s and t, i.e. the two anomalous transport laws are coupled.
At high frequencies propagation and dispersion are equally important and the frequency
dependence of the dispersion relation is found to be anomalous and depends on both t and s. At
low frequencies there is both propagation and dissipation above and below the threshold. Below
the threshold, the group velocity is reduced and vanishes at the percolation threshold.

KINETICS OF
REACTION-LIMITED CLUSTER-CLUSTER AGGREGATION

During the past few years a good understanding of both the structure and kinetics of
diffusion-limited cluster-cluster aggregation (DLCCA) has been achieved. However, real
systems only rarely come close to satisfying the conditions assumed in DLCCA (irreversible fast

8



aggregation to form rigid clusters). In most aggregation processes many encounters between
pairs of clusters are required before two clusters are combined to form a larger cluster. In the
limit where the number of encounters required for permanent bonding is very large (a condition
frequently satisfied in practice), all possible bonding configurations (or at least a representative
sample of them) can be explored before combination occurs. Under these conditions the
aggregation process is limited not by cluster diffusion but by "chemical" details which determine
how many collisions are required for cluster-cluster bonding. Although relatively few examples
of chemically-limited cluster-cluster aggregation have been studied experimentally, it seems
apparent that chemically limited aggregation is more common than diffusion limited aggregation.
In dilute systems we might expect a crossover from chemically limited aggregation at short times
(small clusters separated by relatively small distances) to diffusion limited aggregation at long
times (large clusters separated by large distances) providing that other processes (such as
mechanical instability and settling) do not intervene.

We have introduced and studied [19,20] several different models in order to investigate
reaction-limited cluster-cluster aggregation and the crossover from diffusion-limited to reaction-
limited aggregation. The results obtained from these models are consistent with each other, if

finite size and finite concentration effects are taken into account. For reaction limited aggregation
in three dimensions we find, in the case where the probability that two clusters will combine
depends only on the time that they spend in contact with each other, that the mean cluster size
S(t) increases exponentially with time and that the cluster size distribution Ns(t) decays as Ns(t) -
s-? with 'r having a value which is larger than 1.5. For the case where the probability that two
clusters will combine depends only on the number of times they collide with each other, we find
a power law growth in the mean cluster size, S(t)~tz with z-2.0-2.5, and a cluster size
distribution exponent r close to 1.0. Our results [ 19,20] indicate that the approach to asymptotic
behavior may be quite slow and that the effective fractal dimensionality of the clusters depends
both on the aggregation kinetics and on the extent of aggregation. We find that if the rate of
bonding between two clusters depends on their collision frequency then the exponent has a value
close to 1 for the aggregation of small rigid clusters and close to 2 for the aggregation of large
floppy clusters.

SCALING-GROUP FORMULATION OF MULTIFRACTALS

Scaling behavior is observed in many branches of physics, from percolation and
aggregation to chaos and two-fluid flow in porous media. Fractals have provided a unified
global description of scale invariance. It was first recognized by Mandelbrot in connection with
turbulence that fractals can be partitioned into a set of scale-invariant subsets having an infinite
number of scaling indices or fractal dimensions. Frisch and Parisi first coined the phrase
"multifractals" for this kind of fractal set. Since Mandelbrot's first work on turbulence, there has
been related work in turbulence as well as extensions and applications to aggregation, dynamical
systems, percolation, localization, and polymer absorption. On the basis of the premise that
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scaling is defined by a set of scaling transformations which form a simple product group, we
developed [21] a scaling group formulation for simple fractals and multifractal sets. We showed
that fractal dimension and other exponents are corollary to the scaling-group formalism as fiactal
dimension and other scaling exponents are generators of infinitesimal transformations.

PATTERN FORMATION IN DENDRITIC SOLIDIFICATION

The growth of dendritic crystals is a profound example among a wide range of
spontaneous pattern forming phenomena in physics, chemistry, biology and engineering. The
formation of snowflakes is perhaps the most fascinating and puzzling example of these
processes. Although subject to intensive efforts, previous methods had not produced such
regular and intricate dendritic structures as are found in nature. Therefore, the development of
the deterministic growth model [22] which for the first time was capable of producing realistic
dendritic patterns, including snowflakes, has been an important step in developing effective
methods for understanding the formation of snowflakes and dendritic crystals.

The deterministic growth model [22] is based on direct solution of the diffusion equation
on a regular lattice subject to proper boundary conditions far from the growing cluster and on the
interface between the cluster and the outside. The temperature field is numerically determined by
a relaxation technique such as the Gauss-Seidl over-relaxation method. For a fixed value of the
surface tension, the temperature distribution at the surface are calculated from the Gibbs-
Thomson condition, by numerically determining the surface curvature at each perimeter site. The
interface is advanced by occupation of the perimeter sites, in analogy with the cluster growth
model of Family, et al [23]. Since random growth processes cannot produce such symmetric
patterns as snowflakes, our model is based on a deterministic growth rule: all perimeter sites
having a normalized gradient larger than a fixed, but time dependent, value, are occupied.

The deterministic growth model [22] can produce practically all types of observed two-
dimensional dendritic patterns by changing the surface tension and another adjustable parameter
of the model. The various limiting cases include faceted growth, needle crystals and regular
fractal structures. For intermediate values of the parameters, combinations of these patterns are
obtained. By varying the parameters of the model, a great variety of qualitatively different
patterns were found [221, many of which are qualitatively similar to real snowflakes.

SIMULATING VISCOUS FINGERING:
A CLUSTER GROWTH APPROACH

The formation of patterns by moving interfaces is a common phenomenon in many fields
of science and technology. Examples include the growth of snowflakes, directional solidification
or the interface between two viscous fluid. A large class of these processes can be described by
a diffusion-limited process. This means that the motion of the interface is governed by a spatial
dependent field-like quantity (e.g., pressure) that satisfies the Laplace equation with moving
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boundaries. In order to simulate such an interface and study pattern formation under these
circumstances, we have used [24] an off-lattice version of the diffusion-limited aggregation
model with surface tension. The approach of solving the discrete Laplace equation using random
walkers is more effective than a direct solutions based on various finite difference methods. The
patterns generated [24] in our simulations are very similar to those obtained in the experiments on
fingering in the radial Hele Shaw cell experiments. We find a crossover from compact to fiactal
structure as the length scale is increased and the surface tension is decreased.

AGGREGATION OF ORIENTED ANISOTROPIC PARTICLES

The formation of clusters by the aggregation of small objects and by growth processes is
a subject of considerable interest and of practical importance in physics, chemistry, biology,
medicine, and engineering. We recently studied [25] the aggregation of oriented particles to form
linear structures (rods). We had in mind the aggregation of particles and/or clusters with induced
dipole moments in an external field, the aggregation of magnetic particles in an external magnetic
field, and aggregation or polymerization processes in an ordered liquid crystal. Aggregation in
magnetic fluids or ferrofluids is a particularly interesting example which is of considerable
scientific and practical importance. We used Monte Carlo simulations and scaling theory to
investigate clustering of anisotropic particles. The time-dependent cluster-size distribution in
both two and three-dimensional systems was measured and was found to be well described by
the dynamic scaling theory. The mean cluster size was found to diverge with time with the
exponent z. The value of z was found to agree with the mean-field Smoluchowski result z=lI(l-
y) in d->dc=2 dimensions, where dc is the upper critical dimension, and y is the exponent
describing the dependence of the diffusion coefficient on the cluster mass. Below dc, we find
that our results agree with the expression z=d/(2-dy). At high particle densities, a crossover from
two or three dimensions to one-dimensional behavior was observed.

MANY-BODY EFFECTS IN TWO DIMENSIONAL

OSTWALD RIPENING
The dynamics of a first-order phase transition is an example of the growth of order in a

nonequilibrium system. A typical situation is initiated by a temperature quench such that the
system is brought from a one-phase equilibrium state to a nonequilibrium state inside the
coexistence curve. As a result, phase separation, such as the growth of droplets of the minority
phase, occurs so as to minimize the surface energy. In this last stage, known as Ostwald
ripening, the number of droplets is reduced and the process ends in equilibrium state of full
phase separation. In many systems, including colloidal particles in solution, binary alloys,
binary liquids and ionic gases, Ostwald ripening occurs by a condensation-evaporation
mechanism.

Recent theoretical work predict that the droplet size distribution has a scaling form and the
growth law of the critical droplet radius is of the form Rc(r) - t1/3 . However, numerical studies
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indicate that the critical droplet radius grows as t0 with n less than 1/3 at early time, but
converging to 1/3 in the long-time limit. The existence of a logarithmic correction has been
suggested in two dimensions. The usual growth law Rc(t) - t / 3 without a logarithmic
correction, is based on the assumption of the existence of a screening length and a steady sta e of
local concentration field of diffusing particles. It can be shown that there can be no local steady
state without a screening length in two dimensions, because there is a logarithmic divergence of
the Laplace equation in two dimensions.

We have recently carried out an analytic treatment which confirms the existence of a
screening length in two-dimensional diffusion-controlled growth processes [26]. Our approach
is based on a systematic perturbation theory, including the time dependence of local concentration
field of diffusing particles. We find [26] that there is a screening length which is determined by a
self-consistent condition. This results supports the analysis by Marqusee for treating two
dimensional ripening, based on the assumption of the existence of a screening length.

DIFFUSION-ANNIHILATION IN ONE DIMENSION AND
KINETICS OF THE ISING MODEL AT ZERO TEMPERATURE

The kinetics of diffusion-controlled annihilation in one dimension has been of interest for
some time in the context of particle-antiparticle annihilation, binary reactions in one dimension,
and exciton fusion kinetics in low-dimensional media. While the exponent characterizing the
decay of the particle density in one dimension is well known and an exact solution has been
given for an initial Poisson distribution in the continuum case, only recently have explicit
solutions (for certain initial conditions) been given for diffusion-annihilation on a lattice.
Because of the equivalence between domain walls in the Ising model and particles in diffusion-
annihilation, it has been assumed that there exists an exact duality between the one-dimensional
Ising model at zero temperature and diffusion-annihilation. In particular, R~icz has used this
analogy to study the kinetics of diffusion-annihilation in the presence of sources. However, in
the past, no direct comparison between the kinetics of the Ising model and diffusion-annihilation
in one dimension had been made.

Recently, we derived [27] exact asymptotic expressions for the average domain size, wall
density, and pair-correlation function for the one-dimensional kinetic Ising model at zero
temperature, as a function of the initial magnetization (mo). Our results turn out to be identical to
known results for diffusion-annihilation in the case mo = 0. However, for general values of mo
they differ. Monte Carlo simulation calculations for the domain wall distribution function as a
function of mo were also carried out [27]. Again, agreement was found for the case mo = 0,
while for mo * 0 our results depend on mo, in contrast to what is expected for the case of
diffusion-annihilation. This demonstrates that the duality between the kinetic Ising model and
diffusion-annihilation is only partial. Finally, we have studied the small x behavior of the
domain size distribution scaling function h(x) as a function of mo and have shown, for both the
case of the Ising model and diffusion-annihilation, that the exponent r is equal to 1.
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